NDA Help Center

Login Dialog

Frequently Asked Questions

Glossary

NDA Help Center

Filter Cart

The Filter Cart provides a powerful way to query and access data for which you may be interested.  

A few points related to the filter cart are important to understand with the NDA Query/Filter implementation: 

First, the filter cart is populated asyncronously.  So, when you run a query, it may take a moment to populate but this will happen in the background so you can define other queries during this time.  

When you are adding your first filter, all data associated with your query will be added to the filter cart (whether it be a collection, a concept, a study, a data structure/elment or subjects). Not all data structures or collections will necessarily be displayed.  For example, if you select the NDA imaging structure image03, and further restrict that query to scan_type fMRI, only fMRI images will appear and only the image03 structure will be shown.  To see other data structures, select "Find All Subject Data" which will query all data for those subjects. When a secord or third filter is applied, an AND condition is used.  A subject must exist in all filters.  If the subject does not appear in any one filter, that subjects data will not be included in your filter cart. If that happens, clear your filter cart, and start over.  

It is best to package more data than you need and access those data using other tools, independent of the NDA (e.g. miNDAR snapshot), to limit the data selected.  If you have any questions on data access, are interested in using avaialble web services, or need help accessing data, please contact us for assistance.  

Frequently Asked Questions

Glossary

Loading...

Login
Reset Password

NDA provides a single access to de-identified autism research data. For permission to download data, you will need an NDA account with approved access to NDA or a connected repository (AGRE, IAN, or the ATP). For NDA access, you need to be a research investigator sponsored by an NIH recognized institution with federal wide assurance. See Request Access for more information.

Warning Notice

This is a U.S. Government computer system, which may be accessed and used only for authorized Government business by authorized personnel. Unauthorized access or use of this computer system may subject violators to criminal, civil, and/or administrative action. All information on this computer system may be intercepted, recorded, read, copied, and disclosed by and to authorized personnel for official purposes, including criminal investigations. Such information includes sensitive data encrypted to comply with confidentiality and privacy requirements. Access or use of this computer system by any person, whether authorized or unauthorized, constitutes consent to these terms. There is no right of privacy in this system.

Update Password

You have logged in with a temporary password. Please update your password. Passwords must contain 8 or more characters and must contain at least 3 of the following types of characters:

  • Uppercase
  • Lowercase
  • Numbers
  • Special Characters limited to: %,_,!,@,#,$,-,%,&,+,=,),(,*,^,:,;

Subscribe to our mailing list

Mailing List(s)
Email Format

You are now leaving the NIMH Data Archive (NDA) web site to go to:

Click on the address above if the page does not change within 10 seconds.

Disclaimer

NDA is not responsible for the content of this external site and does not monitor other web sites for accuracy.

Accept Terms
Filter Cart
No filters selected
Description
Value Range
Notes
Data Structures with shared data
No filters have been selected
Switch User

MRI Scan Notes

mri_scan

01

Download Definition as
Download Submission Template as
Element NameData TypeSizeRequiredDescriptionValue RangeNotesAliases
subjectkeyGUIDRequiredThe NDAR Global Unique Identifier (GUID) for research subjectNDAR*
src_subject_idString20RequiredSubject ID how it's defined in lab/projectpid
interview_dateDateRequiredDate on which the interview/genetic test/sampling/imaging/biospecimen was completed. MM/DD/YYYYRequired fielddate_completed
interview_ageIntegerRequiredAge in months at the time of the interview/test/sampling/imaging.0 :: 1260Age is rounded to chronological month. If the research participant is 15-days-old at time of interview, the appropriate value would be 0 months. If the participant is 16-days-old, the value would be 1 month.
sexString20RequiredSex of the subjectM;FM = Male; F = Femalegender
weight_stdFloatRecommendedWeight - Standard Unit-1 = Not known
scantype1IntegerRecommendedScan type: series 11::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime1String10RecommendedStart time: series 1time_scan_began
scannotes1String200RecommendedScan notes: series 1
scantype2IntegerRecommendedScan type: series 21::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime2String10RecommendedStart time: series 2
scannotes2String200RecommendedScan notes: series 2
scantype3IntegerRecommendedScan type: series 31::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime3String10RecommendedStart time: series 3
scannotes3String200RecommendedScan notes: series 3
scantype4IntegerRecommendedScan type: series 41::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime4String10RecommendedStart time: series 4
scannotes4String200RecommendedScan notes: series 4
scantype5IntegerRecommendedScan type: series 51::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime5String10RecommendedStart time: series 5
scannotes5String200RecommendedScan notes: series 5
scantype6IntegerRecommendedScan type: series 61::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime6String10RecommendedStart time: series 6
scannotes6String200RecommendedScan notes: series 6
scantype7IntegerRecommendedScan type: series 71::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime7String10RecommendedStart time: series 7
scannotes7String200RecommendedScan notes: series 7
scantype8IntegerRecommendedScan type: series 81::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime8String10RecommendedStart time: series 8
scannotes8String200RecommendedScan notes: series 8
scantype9IntegerRecommendedScan type: series 91::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime9String10RecommendedStart time: series 9
scannotes9String200RecommendedScan notes: series 9
scantype10IntegerRecommendedScan type: series 101::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime10String10RecommendedStart time: series 10
scannotes10String200RecommendedScan notes: series 10
scantype11IntegerRecommendedScan type: series 111::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime11String10RecommendedStart time: series 11
scannotes11String200RecommendedScan notes: series 11
scantype12IntegerRecommendedScan type: series 121::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime12String10RecommendedStart time: series 12
scannotes12String200RecommendedScan notes: series 12
scantype13IntegerRecommendedScan type: series 131::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime13String10RecommendedStart time: series 13
scannotes13String200RecommendedScan notes: series 13
scantype14IntegerRecommendedScan type: series 141::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime14String10RecommendedStart time: series 14
scannotes14String200RecommendedScan notes: series 14
scantype15IntegerRecommendedScan type: series 151::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime15String10RecommendedStart time: series 15
scannotes15String200RecommendedScan notes: series 15
scantype16IntegerRecommendedScan type: series 161::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime16String10RecommendedStart time: series 16
scannotes16String200RecommendedScan notes: series 16
scantype17IntegerRecommendedScan type: series 171::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime17String10RecommendedStart time: series 17
scannotes17String200RecommendedScan notes: series 17
scantype18IntegerRecommendedScan type: series 181::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime18String10RecommendedStart time: series 18
scannotes18String200RecommendedScan notes: series 18
scantype19IntegerRecommendedScan type: series 191::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime19String10RecommendedStart time: series 19
scannotes19String200RecommendedScan notes: series 19
scantype20IntegerRecommendedScan type: series 201::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime20String10RecommendedStart time: series 20
scannotes20String200RecommendedScan notes: series 20
scantype21IntegerRecommendedScan type: series 211::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime21String10RecommendedStart time: series 21
scannotes21String200RecommendedScan notes: series 21
scantype22IntegerRecommendedScan type: series 221::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime22String10RecommendedStart time: series 22
scannotes22String200RecommendedScan notes: series 22
scantype23IntegerRecommendedScan type: series 231::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime23String10RecommendedStart time: series 23
scannotes23String200RecommendedScan notes: series 23
scantype24IntegerRecommendedScan type: series 241::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime24String10RecommendedStart time: series 24
scannotes24String200RecommendedScan notes: series 24
scantype25IntegerRecommendedScan type: series 251::141=Localizer; 2=Matched_bandwidth4CMRRsequences; 3=Test_EPI; 4=DFR_run1; 5=DFR_run2; 6=DFR_run3; 7=DFR_run4; 8=RestingState; 9=FFA_LOCALIZER; 10=RestingState; 11=gre_field_map; 12=DTI128_p12B0; 13=MP_RAGE; 14=Other
startime25String10RecommendedStart time: series 25
scannotes25String200RecommendedScan notes: series 25
comment_miscString250RecommendedMiscellaneous Commentscomments, ques_subnotes, rsq_notes
rsq_a_crosshairIntegerRecommendedThinking about features of the fixation crosshair0::360
rsq_b_othertasksIntegerRecommendedThinking about the stimuli from the other specific tasks in the study0::360
rsq_c_eventstodayIntegerRecommendedThinking about events that happened today0::360
rsq_d_eventspreviousIntegerRecommendedThinking about events that happened yesterday to a week ago0::360
rsq_e_eventsremoteIntegerRecommendedThinking about events that happened in the past year or more0::360
rsq_f_futuretodayIntegerRecommendedThinking about/planning future activities that may happen in the remainder of the day0::360
rsq_g_futuretomorrowIntegerRecommendedThinking about/planning future activities that may happen tomorrow to a week from now0::360
rsq_h_futureyearsIntegerRecommendedThinking about/planning future activities that may happen next year or several years from now0::360
rsq_i_notemporaldomainIntegerRecommendedThinking about something with no particular temporal domain (e.g. problem solving an idea; thinking about what the purpose of the experiment is)0::360
rsq_j_meditatingIntegerRecommendedMeditating (your mind focused on one thing in particular - e.g. your breath)0::360
rsq_k_blankIntegerRecommendedYou were not thinking about anything at all. Your mind was completely blank0::360
rsq_l_countingIntegerRecommendedCounting0::360
rsq_m_sleepingIntegerRecommendedSleeping0::360
rsq_n_otherIntegerRecommendedOther - Resting State not spent in any listed category0::360
rsqsumFloatRecommendedTotal degrees of pie chart used
rsq_a_pcIntegerRecommendedRSQ A crosshair Percentage0::100
rsq_b_pcIntegerRecommendedRSQ B othertasks Percentage0::100
rsq_c_pcIntegerRecommendedRSQ C eventstoday Percentage0::100
rsq_d_pcIntegerRecommendedRSQ D eventsprevious Percentage0::100
rsq_e_pcIntegerRecommendedRSQ E eventsremote Percentage0::100
rsq_f_pcIntegerRecommendedRSQ F futuretoday Percentage0::100
rsq_g_pcIntegerRecommendedRSQ G futuretomorrow Percentage0::100
rsq_h_pcIntegerRecommendedRSQ H futureyears Percentage0::100
rsq_i_pcIntegerRecommendedRSQ I notemporaldomain Percentage0::100
rsq_j_pcIntegerRecommendedRSQ J meditating Percentage0::100
rsq_k_pcIntegerRecommendedRSQ K blank Percentage0::100
rsq_l_pcIntegerRecommendedRSQ L counting Percentage0::100
rsq_m_pcIntegerRecommendedRSQ M sleeping Percentage0::100
rsq_n_pcIntegerRecommendedRSQ N other Percentage0::100
rsqsumpcFloatRecommendedTotal % based on RSQ pie chart degrees
visnumFloatRecommendedNumeric Visit Number-1.5 = Pre-Screening; -1 = Screening; 0 = Baseline; ## = Visit ## (from 1 to 10); Whole numbers = standard monthly visits; #.001 - #.009 = Unscheduled; #.1 = End of Phase 1; #.2 = End of Phase 2; #.3 = End of Phase 3; #.4 = End of Open Choice Phase; #.5 = End of Study; #.6 = Genetic Analysis; 1000=all visitsscan_visit
scan_completedIntegerRecommendedScan Completed?0;10= Yes; 1= No
scannumberString25RecommendedScan Number
scanidString50RecommendedScanID
Data Structure

This page displays the data structure defined for the measure identified in the title and structure short name. The table below displays a list of data elements in this structure (also called variables) and the following information:

  • Element Name: This is the standard element name
  • Data Type: Which type of data this element is, e.g. String, Float, File location.
  • Size: If applicable, the character limit of this element
  • Required: This column displays whether the element is Required for valid submissions, Recommended for valid submissions, Conditional on other elements, or Optional
  • Description: A basic description
  • Value Range: Which values can appear validly in this element (case sensitive for strings)
  • Notes: Expanded description or notes on coding of values
  • Aliases: A list of currently supported Aliases (alternate element names)
  • For valid elements with shared data, on the far left is a Filter button you can use to view a summary of shared data for that element and apply a query filter to your Cart based on selected value ranges

At the top of this page you can also:

  • Use the search bar to filter the elements displayed. This will not filter on the Size of Required columns
  • Download a copy of this definition in CSV format
  • Download a blank CSV submission template prepopulated with the correct structure header rows ready to fill with subject records and upload

Please email the The NDA Help Desk with any questions.

Distribution for DataStructure: mri_scan01 and Element:
Chart Help

Filters enable researchers to view the data shared in NDA before applying for access or for selecting specific data for download or NDA Study assignment. For those with access to NDA shared data, you may select specific values to be included by selecting an individual bar chart item or by selecting a range of values (e.g. interview_age) using the "Add Range" button. Note that not all elements have appropriately distinct values like comments and subjectkey and are not available for filtering. Additionally, item level detail is not always provided by the research community as indicated by the number of null values given.

Filters for multiple data elements within a structure are supported. Selections across multiple data structures will be supported in a future version of NDA.