Towards Outcome-Driven Patient Subgroups: A Machine Learning Analysis Across Six Depression Treatment Studies | Importance: Major depressive disorder (MDD) is a heterogeneous condition; multiple underlying neurobiological substrates could be associated with treatment response variability. Understanding the sources of this variability and predicting outcomes has been elusive. Machine learning (ML) has shown promise in predicting treatment response in MDD, but one limitation has been the lack of clinical interpretability of machine learning models, limiting clinician confidence in model results.
Objective: To develop a machine learning model to derive treatment-relevant patient profiles using clinical and demographic information.
Design: We analyzed data from six clinical trials of pharmacological treatment for depression (total n = 5438) using the Differential Prototypes Neural Network (DPNN), a neural network model that derives patient prototypes which can be used to derive treatment-relevant patient clusters while learning to generate probabilities for differential treatment response. A model classifying remission and outputting individual remission probabilities for five first-line monotherapies and three combination treatments was trained using clinical and demographic data.
Setting: Previously-conducted clinical trials of antidepressant medications.
Participants: Patients with MDD.
Main outcomes and measures: Model validity and clinical utility were measured based on area under the curve (AUC) and expected improvement in sample remission rate with model-guided treatment, respectively. Post-hoc analyses yielded clusters (subgroups) based on patient prototypes learned during training. Prototypes were evaluated for interpretability by assessing differences in feature distributions (e.g. age, sex, symptom severity) and treatment-specific outcomes.
Results: A 3-prototype model achieved an AUC of 0.66 and an expected absolute improvement in population remission rate of 6.5% (relative improvement of 15.6%). We identified three treatment-relevant patient clusters. Cluster A patients tended to be younger, to have increased levels of fatigue and more severe symptoms. Cluster B patients tended to be older, female with less severe symptoms, and the highest remission rates. Cluster C patients had more severe symptoms, lower remission rates, more psychomotor agitation, more intense suicidal ideation, more somatic genital symptoms, and showed improved remission with venlafaxine.
Conclusion and Relevance: It is possible to produce novel treatment-relevant patient profiles using machine learning models; doing so may improve precision medicine for depression. Note: This model is not currently the subject of any active clinical trials and is not intended for clinical use. | 745/6074 | Secondary Analysis | Shared |
Treatment selection using prototyping in latent-space with application to depression treatment | Machine-assisted treatment selection commonly follows one of two paradigms: a fully personalized paradigm which ignores any possible clustering of patients; or a sub-grouping paradigm which ignores personal differences within the identified groups. While both paradigms have shown promising results, each of them suffers from important limitations. In this article, we propose a novel deep learning-based treatment
selection approach that is shown to strike a balance between the two paradigms using latent-space prototyping. Our approach is specifically tailored for domains in which effective prototypes and sub-groups of patients are assumed to exist, but groupings relevant to the training objective are not observable in the non-latent space. In an extensive evaluation, using both synthetic and Major Depressive Disorder (MDD) real-world clinical data describing 4754 MDD patients from clinical trials for depression treatment, we show that our approach favorably compares with state-of-the-art approaches. Specifically, the model produced an 8% absolute and 23% relative improvement over random treatment allocation. This is potentially clinically significant, given the large number of patients with MDD. Therefore, the model can bring about a much desired leap forward in the way depression is treated today. | 749/5946 | Secondary Analysis | Shared |
Analysis of Features Selected by a Deep Learning Model for Differential Treatment Selection in Depression | Background: Deep learning has utility in predicting differential antidepressant treatment response among patients with major depressive disorder, yet there remains a paucity of research describing how to interpret deep learning models in a clinically or etiologically meaningful way. In this paper, we describe methods for analyzing deep learning models of clinical and demographic psychiatric data, using our recent work on a deep learning model of STAR*D and CO-MED remission prediction.
Methods: Our deep learning analysis with STAR*D and CO-MED yielded four models that predicted response to the four treatments used across the two datasets. Here, we use classical statistics and simple data representations to improve interpretability of the features output by our deep learning model and provide finer grained understanding of their clinical and etiological significance. Specifically, we use representations derived from our model to yield features predicting both treatment non-response and differential treatment response to four standard antidepressants, and use linear regression and t-tests to address questions about the contribution of trauma, education, and somatic symptoms to our models.
Results: Traditional statistics were able to probe the input features of our deep learning models, reproducing results from previous research, while providing novel insights into depression causes and treatments. We found that specific features were predictive of treatment response, and were able to break these down by treatment and non-response categories; that specific trauma indices were differentially predictive of baseline depression severity; that somatic symptoms were significantly different between males and females, and that education and low income proved important psycho-social stressors associated with depression.
Conclusion: Traditional statistics can augment interpretation of deep learning models. Such interpretation can lend us new hypotheses about depression and contribute to building causal models of etiology and prognosis. We discuss dataset-specific effects and ideal clinical samples for machine learning analysis aimed at improving tools to assist in optimizing treatment. | 750/4800 | Secondary Analysis | Shared |
Differential Treatment Benefit Prediction for Treatment Selection in Depression: A Deep Learning Analysis of STAR*D and CO-MED Data | Depression affects one in nine people, but treatment response rates remain low. There is significant potential in the use of computational modeling techniques to predict individual patient responses and thus provide more personalized treatment. Deep learning is a promising computational technique that can be used for differential treatment selection based on predicted remission probability. Using Sequenced Treatment Alternatives to Relieve Depression (STAR*D) and Combining Medications to Enhance Depression Outcomes (CO-MED) trial data, we employed deep neural networks to predict remission after feature selection. Treatments included were citalopram, escitalopram, bupropion SR plus escitalopram, and venlafaxine plus mirtazapine. Differential treatment benefit was estimated in terms of improvement of population remission rates after application of the model for treatment selection using two approaches: (1) using predictions generated directly from the model (the predicted improvement approach) and (2) using bootstrapping for sample generation and then estimating population remission rate for patients who actually received the drug predicted by the model compared to the general population (the actual improvement approach). Our deep learning model predicted remission in a pooled CO-MED/STAR*D dataset (including four treatments) with an area under the curve of 0.69 using 17 input features. Our actual improvement analysis showed a statistically significant 2.48% absolute improvement (corresponding to a 7.2% relative improvement) in population remission rate (p = 0.01, CI 2.48% ± 0.5%). Our model serves as proof-of-concept that deep learning approaches, with further refinement and work to address concerns about differences between studies when multiple datasets are used for training, may have utility in differential prediction of antidepressant response when selecting from a number of treatment options. | 750/4800 | Secondary Analysis | Shared |
Summary Measures for Quantifying the Extent of Visit Irregularity in Longitudinal Data: The STAR*D Study | This chapter applies the measures of irregularity from this thesis to the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study. The STAR*D study is the largest randomized clinical trial on patients suffering from major depression. This chapter focuses on the first phase of the study which pre-specified a common set of scheduled measurement occasions at weeks 2, 4, 6, 9, 12 post-baseline where individuals had their Quick Inventory of Depression Symptomatology (QIDS) questionnaire score recorded; however there were individuals who missed scheduled visits, and had unscheduled visits. Therefore, interest lies in determining whether visits can be treated as repeated measures. This is followed by a demonstration on how to select the appropriate modelling approach for the study outcome, and how to interpret the resulting parameter estimates. The target of inference of this chapter is to evaluate the mean QIDS score over the first 12 weeks of the trial. | 76/4036 | Secondary Analysis | Shared |
Studying treatment-effect heterogeneity in precision medicine through induced subgroups | Precision medicine, in the sense of tailoring the choice of medical treatment to patients’ pretreatment characteristics, is nowadays gaining a lot of attention. Preferably, this tailoring should be realized in an evidencebased way, with key evidence in this regard pertaining to subgroups of patients that respond differentially to treatment (i.e., to subgroups involved in treatment–subgroup interactions). Often a-priori hypotheses on subgroups involved in treatment–subgroup interactions are lacking or are incomplete at best. Therefore, methods are needed that can induce such subgroups from empirical data on treatment effectiveness in a post hoc manner. Recently, quite a few such methods have been developed. So far, however, there is little empirical experience in their usage. This may be problematic for medical statisticians and statistically minded medical researchers, as many (nontrivial) choices have to be made during the dataanalytic process. The main purpose of this paper is to discuss the major concepts and considerations when using these methods. This discussion will be based on a systematic, conceptual, and technical analysis of the type of research questions at play, and of the type of data that the methods can
handle along with the available software, and a review of available empirical evidence. We will illustrate all this with the analysis of a dataset comparing several anti-depressant treatments. | 665/665 | Secondary Analysis | Shared |