The evolution and population diversity of human-specific segmental duplications | Segmental duplications contribute to human evolution, adaptation and genomic instability but are often poorly characterized. We investigate the evolution, genetic variation and coding potential of human-specific segmental duplications (HSDs). We identify 218 HSDs based on analysis of 322 deeply sequenced archaic and contemporary hominid genomes. We sequence 550 human and nonhuman primate genomic clones to reconstruct the evolution of the largest, most complex regions with protein-coding potential (n=80 genes/33 gene families). We show that HSDs are non-randomly organized, associate preferentially with ancestral ape duplications termed “core duplicons”, and evolved primarily in an interspersed inverted orientation. In addition to Homo sapiens-specific gene expansions (e.g., TCAF1/2), we highlight ten gene families (e.g., ARHGAP11B and SRGAP2C) where copy number never returns to the ancestral state, there is evidence of mRNA splicing, and no common gene-disruptive mutations are observed in the general population. Such duplicates are candidates for the evolution of human-specific adaptive traits. | 1/6360 | Primary Analysis | Shared |
Brain-based sex differences in autism spectrum disorder across the lifespan: A systematic review of structural MRI, fMRI, and DTI findings | Females with autism spectrum disorder (ASD) have been long overlooked in neuroscience research, but emerging evidence suggests they show distinct phenotypic trajectories and age-related brain differences. Sex-related biological factors (e.g., hormones, genes) may play a role in ASD etiology and have been shown to influence neurodevelopmental trajectories. Thus, a lifespan approach is warranted to understand brain-based sex differences in ASD. This systematic review on MRI-based sex differences in ASD was conducted to elucidate variations across the lifespan and inform biomarker discovery of ASD in females. We identified articles through two database searches. Fifty studies met criteria and underwent integrative review. We found that regions expressing replicable sex-by-diagnosis differences across studies overlapped with regions showing sex differences in neurotypical (NT) cohorts, in particular regions showing NT male>female volumes. Furthermore, studies investigating age-related brain differences across a broad age-span suggest distinct neurodevelopmental patterns in females with ASD. Qualitative comparison across youth and adult studies also supported this hypothesis. However, many studies collapsed across age, which may mask differences. Furthermore, accumulating evidence supports the female protective effect in ASD, although only one study examined brain circuits implicated in “protection.” When synthesized with the broader literature, brain-based sex differences in ASD may come from various sources, including genetic and endocrine processes involved in brain “masculinization” and “feminization” across early development, puberty, and other lifespan windows of hormonal transition. Furthermore, sex-related biology may interact with peripheral processes, in particular the stress axis and brain arousal system, to produce distinct neurodevelopmental patterns in males and females with ASD. Future research on neuroimaging-based sex differences in ASD would benefit from a lifespan approach in well-controlled and multivariate studies. Possible relationships between behavior, sex hormones, and brain development in ASD remain largely unexamined. | 1/759 | Secondary Analysis | Shared |
Word Learning and Word Features | Vocabulary composition and word-learning biases are closely interrelated in typical development. Learning new words involves attending to certain properties to facilitate word learning. Such word-learning biases are influenced by perceptually and conceptually salient word features, including high imageability, concreteness, and iconicity. This study examined the association of vocabulary knowledge and word features in young children with ASD (n = 280) and typically developing (TD) toddlers (n = 1,054). Secondary analyses were conducted using data from the National Database for Autism Research and the Wordbank database. Expressive vocabulary was measured using the MacArthur-Bates Communicative Development Inventory. Although the trajectories for concreteness, iconicity, and imageability are similar between children with ASD and TD toddlers, divergences were observed. Differences in imageability are seen early but resolve to a common trajectory; differences in iconicity are small but consistent; and differences in concreteness only emerge after both groups reach a simultaneous peak, before converging again. This study reports unique information about the nonlinear growth patterns associated with each word feature for and distinctions in these growth patterns between the groups. | 1/280 | Primary Analysis | Shared |
Examining the Shape Bias in Young Autistic Children: A Vocabulary Composition Analysis | Shape is a salient object property and one of the first that children use to categorize objects under one label. Colunga and Sims (2017) suggest that noun vocabulary composition and word learning biases are closely interrelated in typical development. The current study examined the association between noun vocabulary knowledge and perceptual word features, specifically shape and material features. Participants included 249 autistic children and 1,245 non-autistic toddlers who were matched on expressive noun vocabulary size and gender. Nouns were categorized using the Samuelson and Smith (1999) noun feature database. A simple group comparison revealed no group differences in shape bias; both groups evidenced developing noun vocabularies that favored shape+solid and nonsolid+material nouns. However, the trajectory of evidence of shape bias as a function of vocabulary size differed between the groups, with autistic children
demonstrating a reduced shape-bias initially. Future work should examine how children’s learning biases shift over development and whether the shape bias promotes lexical development to the same degree across groups. | 1/249 | Secondary Analysis | Shared |
Modeling Vocabulary Growth in Autistic and Non-Autistic Children | We assessed the goodness of fit of three models of vocabulary growth, with varying sensitivity to the structure of the environment and the learner’s internal state, to estimated vocabulary growth trajectories in autistic and non-autistic children. We first computed word-level acquisition norms that indicate the vocabulary size at which individual words tend to be learned by each group. We then evaluated how well network growth models based on natural language co-occurrence structure and word associations account for variance in the autistic and non-autistic acquisition norms. In addition to replicating key observations from prior work and observing that the growth models explained similar amounts of variance in each group, we found that autistic vocabulary growth also exhibits growth consistent with “the lure of the associates” model. Thus, both groups leverage semantic structure in the learning environment for vocabulary development, but autistic vocabulary growth is also strongly influenced by existing vocabulary knowledge. | 1/247 | Secondary Analysis | Shared |
Semantic modeling 2023 | Although it is well documented that children with ASD are slower to develop their lexicons, we still have a limited understanding of the structure of early lexical knowledge in children with ASD. The current study uses network analysis and differential item functioning anlaysis to examine the structure of semantic knowledge, which may provide insight into the learning processes that influence early word learning. | 1/208 | Secondary Analysis | Shared |
Semantic Network Modeling in Young Autistic Children | Background: Most young autistic children have delayed vocabulary growth relative to their non-autistic peers. Additionally, previous studies have revealed that autistic children are less likely to encode associated features of novel objects, suggesting inefficient encoding or different processes for acquiring semantic information about words. Recent network analyses of vocabulary growth revealed important relationships between early vocabulary acquisition and the structure of the sematic environment.
Methods: We studied the expressive vocabularies of 970 non-autistic toddlers (Mage = 20.82 months) and 194 autistic children (Mage = 54.58 months) in two studies. The groups were vocabulary-matched (words produced: MAutistic = 213.60, MNon-autistic = 213.72). In study 1, we estimated their trajectories of semantic development using network analyses. Network structure was based on child-oriented adult-generated word associations. We compared child semantic networks according to indegree, average shortest path length, and clustering coefficient (features that holistically contribute to well-connected network structure). Then, in study 2, we attempted to relate vocabulary-level effects to word-level learning biases.
Results: Study 1 revealed that autistic and non-autistic children are sensitive to the structure of their semantic environment. Both groups demonstrated nonlinear vocabulary trajectories that differed from random acquisition networks. Despite similarities, group differences were observed for each network metric. Differences were most pronounced for clustering coefficient (how closely connected groups of words are), with earlier peaks for autistic children. Study 2 demonstrated that many words differ in their expected vocabulary size of acquisition.
Conclusions: Group differences at the vocabulary- and word-levels indicate that, although autistic children are learning from their semantic environment, they may be processing their semantic environment differently. These deviations indicate that autistic children have distinctive learning biases that may align with core autism features. | 1/194 | Secondary Analysis | Shared |