Examining the validity of the use of ratio IQs in psychological assessments | IQ tests are amongst the most used psychological assessments, both in research and clinical settings. For participants who cannot complete IQ tests normed for their age, ratio IQ scores (RIQ) are routinely computed and used as a proxy of IQ, especially in large research databases to avoid missing data points. However, because it has never been scientifically validated, this practice is questionable. In the era of big data, it is important to examine the validity of this widely used practice. In this paper, we use the case of autism to examine the differences between standard full-scale IQ (FSIQ) and RIQ. Data was extracted from four databases in which ages, FSIQ scores and subtests raw scores were available for autistic participants between 2 and 17 years old. The IQ tests included were the MSEL (N=12033), DAS-II early years (N=1270), DAS-II school age (N=2848), WISC-IV (N=471) and WISC-V (N=129). RIQs were computed for each participant as well as the discrepancy (DSC) between RIQ and FSIQ. We performed two linear regressions to respectively assess the effect of FSIQ and of age on the DSC for each IQ test, followed by additional analyses comparing age subgroups as well as FSIQ subgroups on DSC. Participants at the extremes of the FSIQ distribution tended to have a greater DSC than participants with average FSIQ. Furthermore, age significantly predicted the DSC, with RIQ superior to FSIQ for younger participants while the opposite was found for older participants. These results question the validity of this widely used alternative scoring method, especially for individuals at the extremes of the normal distribution, with whom RIQs are most often employed. | 60/17423 | Secondary Analysis | Shared |
The importance of low IQ to early diagnosis of autism | Some individuals can flexibly adapt to life’s changing demands while others, in particular those with Autism Spectrum Disorder (ASD), find it challenging. The origin of early individual differences in cognitive abilities, the putative tools with which to navigate novel information in life, including in infants later diagnosed with ASD remains unexplored. Moreover, the role of intelligence quotient (IQ) vis-à-vis core features of autism remains debated. We systematically investigate the contribution of early IQ in future autism outcomes in an extremely large, population-based study of 8,000 newborns, infants, and toddlers from the US between 2 and 68 months with over 15,000 cross-sectional and longitudinal assessments, and for whom autism outcomes are ascertained or ruled out by about 2-4 years. This population is representative of subjects involved in the National Institutes of Health (NIH)-funded research, mainly on atypical development, in the US. Analyses using predetermined age bins showed that IQ scores are consistently lower in ASD relative to TD at all ages (p<0.001), and IQ significantly correlates with calibrated severity scores (total CSS, as well as non-verbal and verbal CSS) on the ADOS. Note, VIQ is no better than the full-scale IQ to predict ASD cases. These findings raise new, compelling questions about potential atypical brain circuitry affecting performance in both verbal and nonverbal abilities and that precede an ASD diagnosis. This study is the first to establish prospectively that low early IQ is a major feature of ASD in early childhood. | 19/6323 | Secondary Analysis | Shared |
Word Learning and Word Features | Vocabulary composition and word-learning biases are closely interrelated in typical development. Learning new words involves attending to certain properties to facilitate word learning. Such word-learning biases are influenced by perceptually and conceptually salient word features, including high imageability, concreteness, and iconicity. This study examined the association of vocabulary knowledge and word features in young children with ASD (n = 280) and typically developing (TD) toddlers (n = 1,054). Secondary analyses were conducted using data from the National Database for Autism Research and the Wordbank database. Expressive vocabulary was measured using the MacArthur-Bates Communicative Development Inventory. Although the trajectories for concreteness, iconicity, and imageability are similar between children with ASD and TD toddlers, divergences were observed. Differences in imageability are seen early but resolve to a common trajectory; differences in iconicity are small but consistent; and differences in concreteness only emerge after both groups reach a simultaneous peak, before converging again. This study reports unique information about the nonlinear growth patterns associated with each word feature for and distinctions in these growth patterns between the groups. | 5/280 | Primary Analysis | Shared |
Examining the Shape Bias in Young Autistic Children: A Vocabulary Composition Analysis | Shape is a salient object property and one of the first that children use to categorize objects under one label. Colunga and Sims (2017) suggest that noun vocabulary composition and word learning biases are closely interrelated in typical development. The current study examined the association between noun vocabulary knowledge and perceptual word features, specifically shape and material features. Participants included 249 autistic children and 1,245 non-autistic toddlers who were matched on expressive noun vocabulary size and gender. Nouns were categorized using the Samuelson and Smith (1999) noun feature database. A simple group comparison revealed no group differences in shape bias; both groups evidenced developing noun vocabularies that favored shape+solid and nonsolid+material nouns. However, the trajectory of evidence of shape bias as a function of vocabulary size differed between the groups, with autistic children
demonstrating a reduced shape-bias initially. Future work should examine how children’s learning biases shift over development and whether the shape bias promotes lexical development to the same degree across groups. | 6/249 | Secondary Analysis | Shared |
Modeling Vocabulary Growth in Autistic and Non-Autistic Children | We assessed the goodness of fit of three models of vocabulary growth, with varying sensitivity to the structure of the environment and the learner’s internal state, to estimated vocabulary growth trajectories in autistic and non-autistic children. We first computed word-level acquisition norms that indicate the vocabulary size at which individual words tend to be learned by each group. We then evaluated how well network growth models based on natural language co-occurrence structure and word associations account for variance in the autistic and non-autistic acquisition norms. In addition to replicating key observations from prior work and observing that the growth models explained similar amounts of variance in each group, we found that autistic vocabulary growth also exhibits growth consistent with “the lure of the associates” model. Thus, both groups leverage semantic structure in the learning environment for vocabulary development, but autistic vocabulary growth is also strongly influenced by existing vocabulary knowledge. | 6/247 | Secondary Analysis | Shared |
Semantic modeling 2023 | Although it is well documented that children with ASD are slower to develop their lexicons, we still have a limited understanding of the structure of early lexical knowledge in children with ASD. The current study uses network analysis and differential item functioning anlaysis to examine the structure of semantic knowledge, which may provide insight into the learning processes that influence early word learning. | 5/208 | Secondary Analysis | Shared |
Semantic Network Modeling | Although it is well documented that children with ASD are slower to develop their lexicons, we still have a limited understanding of the structure of early lexical knowledge in children with ASD. The current study uses network analysis to examine the structure of semantic knowledge, which may provide insight into the learning processes that influence early word learning. | 3/200 | Secondary Analysis | Shared |
Semantic Network Modeling in Young Autistic Children | Background: Most young autistic children have delayed vocabulary growth relative to their non-autistic peers. Additionally, previous studies have revealed that autistic children are less likely to encode associated features of novel objects, suggesting inefficient encoding or different processes for acquiring semantic information about words. Recent network analyses of vocabulary growth revealed important relationships between early vocabulary acquisition and the structure of the sematic environment.
Methods: We studied the expressive vocabularies of 970 non-autistic toddlers (Mage = 20.82 months) and 194 autistic children (Mage = 54.58 months) in two studies. The groups were vocabulary-matched (words produced: MAutistic = 213.60, MNon-autistic = 213.72). In study 1, we estimated their trajectories of semantic development using network analyses. Network structure was based on child-oriented adult-generated word associations. We compared child semantic networks according to indegree, average shortest path length, and clustering coefficient (features that holistically contribute to well-connected network structure). Then, in study 2, we attempted to relate vocabulary-level effects to word-level learning biases.
Results: Study 1 revealed that autistic and non-autistic children are sensitive to the structure of their semantic environment. Both groups demonstrated nonlinear vocabulary trajectories that differed from random acquisition networks. Despite similarities, group differences were observed for each network metric. Differences were most pronounced for clustering coefficient (how closely connected groups of words are), with earlier peaks for autistic children. Study 2 demonstrated that many words differ in their expected vocabulary size of acquisition.
Conclusions: Group differences at the vocabulary- and word-levels indicate that, although autistic children are learning from their semantic environment, they may be processing their semantic environment differently. These deviations indicate that autistic children have distinctive learning biases that may align with core autism features. | 5/194 | Secondary Analysis | Shared |