Examining Diagnostic Trends and Gender Differences in the ADOS-II | Approximately 3–4 boys for every girl meet the clinical criteria for autism in studies of community diagnostic patterns and studies of autism using samples of convenience. However, girls with autism have been hypothesized to be underdiagnosed, possibly because they may present with differing symptom profiles as compared to boys. This secondary data analysis used the National Database of Autism Research (NDAR) to examine how gender and symptom profiles are associated with one another in a gold standard assessment of autism symptoms, the Autism Diagnostic Observation Schedule II (ADOS-II; Lord, C., Luyster, R., Guthrie, W., & Pickles A. (2012a). Patterns of developmental trajectories in toddlers with autism spectrum disorder. Journal of Consulting and Clinical Psychology, 80(3):477–489. https://doi.org/10.1037/a0027214. Epub 2012 Apr 16. PMID: 22506796, PMCID: PMC3365612). ADOS-II scores from 6183 children ages 6–14 years from 78 different studies in the NDAR indicated that gender was a significant predictor of total algorithm, restrictive and repetitive behavioral, and social communicative difficulties composite severity scores. These findings suggest that gender differences in ADOS scores are common in many samples and may reflect on current diagnostic practices. | 17/5615 | Secondary Analysis | Shared |
Gender Differences: Confirmatory Factor Analysis of the ADOS-II | Purpose
Recent research has suggested that autism may present differently in girls compared to boys, encouraging the exploration of a sex-differential diagnostic criteria. Gender differences in diagnostic assessments have been shown on the ADOS-II, such that, on average, females score significantly lower than males on all scales and are less likely to show atypicality on most items related to social communicative difficulties. Yet, gender differences in the latent structure of instruments like the ADOS-II have not been examined systematically.
Methods
As such, this secondary data analysis examined 4,100 youth diagnosed with autism (Mage = 9.9, 813 female & 3287 male) examined item response trends by gender on the ADOS-II Module 3.
Results
Multi-Group Confirmatory Factor Analysis results show that the factor loadings of four ADOS-II items differ across the genders. One SCD item and one RRB item are strongly related to the latent factor in the female group, while two RRB items have larger factor loadings in the male group.
Conclusion
The assumption of an identical latent factor structure for the ADOS-II Module 3 for males and females might not be justifiable. Possible diagnostic implications are discussed. | 17/5615 | Secondary Analysis | Shared |
Investigating autism etiology and heterogeneity by decision tree algorithm | Autism spectrum disorder (ASD) is a neurodevelopmental disorder that causes deficits in cognition, communication and social skills. ASD, however, is a highly heterogeneous disorder. This heterogeneity has made identifying the etiology of ASD a particularly difficult challenge, as patients exhibit a wide spectrum of symptoms without any unifying genetic or environmental factors to account for the disorder. For better understanding of ASD, it is paramount to identify potential genetic and environmental risk factors that are comorbid with it. Identifying such factors is of great importance to determine potential causes for the disorder, and understand its heterogeneity. Existing large-scale datasets offer an opportunity for computer scientists to undertake this task by utilizing machine learning to reliably and efficiently obtain insight about potential ASD risk factors, which would in turn assist in guiding research in the field. In this study, decision tree algorithms were utilized to analyze related factors in datasets obtained from the National Database for Autism Research (NDAR) consisting of nearly 3000 individuals. We were able to identify 15 medical conditions that were highly associated with ASD diagnoses in patients; furthermore, we extended our analysis to the family medical history of patients and we report six potentially hereditary medical conditions associated with ASD. Associations reported had a 90% accuracy. Meanwhile, gender comparisons highlighted conditions that were unique to each gender and others that overlapped. Those findings were validated by the academic literature, thus opening the way for new directions for the use of decision tree algorithms to further understand the etiology of autism.
| 14/3382 | Secondary Analysis | Shared |
Combining Gaze and Demographic Feature Descriptors for Autism Classification | People with autism suffer from social challenges and communication difficulties, which may prevent them from leading a fruitful and enjoyable life. It is imperative to diagnose and start treatments for autism as early as possible and, in order to do so, accurate methods of identifying the disorder are vital. We propose a novel method for classifying autism through the use of eye gaze and demographic feature descriptors that include a subject’s age and gender. We construct feature descriptors that incorporate the subject’s age and gender, as well as features based on eye gaze data. Using eye gaze information from the National Database for Autism Research, we tested our constructed feature descriptors on three different classifiers; random regression forests, C4.5 decision tree, and PART. Our proposed method for classifying autism resulted in a top classification rate of 96.2%. | 45/756 | Secondary Analysis | Shared |
comparing EEG metrics during eyes closed versus eyes open rest in autism | Understanding the complex relationship between brain dynamics and mental disorders has proved difficult. Sample sizes have often been small, and brain dynamics have often been evaluated in only one state. Here, data obtained from the NIMH data archive were used to create a sample of 395 individuals with both eyes open and eyes closed resting state EEG data. All data were submitted to a standard pipeline to extract power spectra, peak alpha frequency, the slope of the 1/f curve, multi scale sample entropy, phase amplitude coupling, and intersite phase clustering. These data along with the survey data collected at the time of data collection form a valuable resource for interogating the relationship between brain state changes and autism diagnosis. | 1/336 | Secondary Analysis | Shared |
Cortico-Basal Ganglia Brain Structure and Links to Restricted, Repetitive Behavior in Autism Spectrum Disorder | Restricted repetitive behavior (RRB) is one of two criteria domains required for the diagnosis of autism spectrum disorder (ASD). Neuroimaging is widely used to study brain alterations associated with ASD and the domain of social and communication deficits, but there has been less work regarding alterations associated with RRB. In this study we utilized neuroimaging data available from the National Database for Autism Research to assess volume in the basal ganglia and cerebellum, as well as microstructure in basal ganglia and cerebellar white matter tracts in ASD. We also investigated whether these measures differed between males and females with ASD, and how these factors correlated with clinical measures of RRB from the same individuals. We found that individuals with ASD had significant differences in free-water corrected fractional anisotropy (FAT) and free-water in cortico-basal ganglia white matter tracts, but that these measures did not differ between males versus females with ASD. Moreover, both FAT and free-water in these tracts were significantly correlated with measures of RRB. Despite no differences in volumetric measures in basal ganglia and cerebellum, these findings suggest the links between RRB and brain structure are within specific cortico-basal ganglia white matter tracts. | 1/192 | Secondary Analysis | Shared |
How anxious do you think I am? Relationship between state and trait anxiety in children with and without ASD during social tasks | Individuals with autism spectrum disorder
(ASD) often exhibit increased anxiety, even in non-stressful
situations. We investigate general anxiousness (anxiety
trait) and responses to stressful situations (anxiety state) in
22 adolescents with ASD and 32 typically developing controls.
We measured trait anxiety with standardized self- and
parent-reported questionnaires. We used a Biopac system to
capture state anxiety via skin conductance responses, mean
heart rate and heart rate variability during high- and lowanxiety
tasks. Results reveal higher trait anxiety in adolescents
with ASD (p < 0.05) and no group difference in state
anxiety. Increased parent-reported trait anxiety may predict
decreased state anxiety during high-stress conditions.
Together, these findings suggest that higher trait anxiety
may result in dampened physical responses to stress. | 36/36 | Primary Analysis | Shared |