Examining the validity of the use of ratio IQs in psychological assessments | IQ tests are amongst the most used psychological assessments, both in research and clinical settings. For participants who cannot complete IQ tests normed for their age, ratio IQ scores (RIQ) are routinely computed and used as a proxy of IQ, especially in large research databases to avoid missing data points. However, because it has never been scientifically validated, this practice is questionable. In the era of big data, it is important to examine the validity of this widely used practice. In this paper, we use the case of autism to examine the differences between standard full-scale IQ (FSIQ) and RIQ. Data was extracted from four databases in which ages, FSIQ scores and subtests raw scores were available for autistic participants between 2 and 17 years old. The IQ tests included were the MSEL (N=12033), DAS-II early years (N=1270), DAS-II school age (N=2848), WISC-IV (N=471) and WISC-V (N=129). RIQs were computed for each participant as well as the discrepancy (DSC) between RIQ and FSIQ. We performed two linear regressions to respectively assess the effect of FSIQ and of age on the DSC for each IQ test, followed by additional analyses comparing age subgroups as well as FSIQ subgroups on DSC. Participants at the extremes of the FSIQ distribution tended to have a greater DSC than participants with average FSIQ. Furthermore, age significantly predicted the DSC, with RIQ superior to FSIQ for younger participants while the opposite was found for older participants. These results question the validity of this widely used alternative scoring method, especially for individuals at the extremes of the normal distribution, with whom RIQs are most often employed. | 3/17423 | Secondary Analysis | Shared |
Examining Diagnostic Trends and Gender Differences in the ADOS-II | Approximately 3–4 boys for every girl meet the clinical criteria for autism in studies of community diagnostic patterns and studies of autism using samples of convenience. However, girls with autism have been hypothesized to be underdiagnosed, possibly because they may present with differing symptom profiles as compared to boys. This secondary data analysis used the National Database of Autism Research (NDAR) to examine how gender and symptom profiles are associated with one another in a gold standard assessment of autism symptoms, the Autism Diagnostic Observation Schedule II (ADOS-II; Lord, C., Luyster, R., Guthrie, W., & Pickles A. (2012a). Patterns of developmental trajectories in toddlers with autism spectrum disorder. Journal of Consulting and Clinical Psychology, 80(3):477–489. https://doi.org/10.1037/a0027214. Epub 2012 Apr 16. PMID: 22506796, PMCID: PMC3365612). ADOS-II scores from 6183 children ages 6–14 years from 78 different studies in the NDAR indicated that gender was a significant predictor of total algorithm, restrictive and repetitive behavioral, and social communicative difficulties composite severity scores. These findings suggest that gender differences in ADOS scores are common in many samples and may reflect on current diagnostic practices. | 4/5615 | Secondary Analysis | Shared |
Gender Differences: Confirmatory Factor Analysis of the ADOS-II | Purpose
Recent research has suggested that autism may present differently in girls compared to boys, encouraging the exploration of a sex-differential diagnostic criteria. Gender differences in diagnostic assessments have been shown on the ADOS-II, such that, on average, females score significantly lower than males on all scales and are less likely to show atypicality on most items related to social communicative difficulties. Yet, gender differences in the latent structure of instruments like the ADOS-II have not been examined systematically.
Methods
As such, this secondary data analysis examined 4,100 youth diagnosed with autism (Mage = 9.9, 813 female & 3287 male) examined item response trends by gender on the ADOS-II Module 3.
Results
Multi-Group Confirmatory Factor Analysis results show that the factor loadings of four ADOS-II items differ across the genders. One SCD item and one RRB item are strongly related to the latent factor in the female group, while two RRB items have larger factor loadings in the male group.
Conclusion
The assumption of an identical latent factor structure for the ADOS-II Module 3 for males and females might not be justifiable. Possible diagnostic implications are discussed. | 4/5615 | Secondary Analysis | Shared |
Investigating autism etiology and heterogeneity by decision tree algorithm | Autism spectrum disorder (ASD) is a neurodevelopmental disorder that causes deficits in cognition, communication and social skills. ASD, however, is a highly heterogeneous disorder. This heterogeneity has made identifying the etiology of ASD a particularly difficult challenge, as patients exhibit a wide spectrum of symptoms without any unifying genetic or environmental factors to account for the disorder. For better understanding of ASD, it is paramount to identify potential genetic and environmental risk factors that are comorbid with it. Identifying such factors is of great importance to determine potential causes for the disorder, and understand its heterogeneity. Existing large-scale datasets offer an opportunity for computer scientists to undertake this task by utilizing machine learning to reliably and efficiently obtain insight about potential ASD risk factors, which would in turn assist in guiding research in the field. In this study, decision tree algorithms were utilized to analyze related factors in datasets obtained from the National Database for Autism Research (NDAR) consisting of nearly 3000 individuals. We were able to identify 15 medical conditions that were highly associated with ASD diagnoses in patients; furthermore, we extended our analysis to the family medical history of patients and we report six potentially hereditary medical conditions associated with ASD. Associations reported had a 90% accuracy. Meanwhile, gender comparisons highlighted conditions that were unique to each gender and others that overlapped. Those findings were validated by the academic literature, thus opening the way for new directions for the use of decision tree algorithms to further understand the etiology of autism.
| 6/3382 | Secondary Analysis | Shared |
Semantic modeling 2023 | Although it is well documented that children with ASD are slower to develop their lexicons, we still have a limited understanding of the structure of early lexical knowledge in children with ASD. The current study uses network analysis and differential item functioning anlaysis to examine the structure of semantic knowledge, which may provide insight into the learning processes that influence early word learning. | 1/208 | Secondary Analysis | Shared |
Semantic Network Modeling in Young Autistic Children | Background: Most young autistic children have delayed vocabulary growth relative to their non-autistic peers. Additionally, previous studies have revealed that autistic children are less likely to encode associated features of novel objects, suggesting inefficient encoding or different processes for acquiring semantic information about words. Recent network analyses of vocabulary growth revealed important relationships between early vocabulary acquisition and the structure of the sematic environment.
Methods: We studied the expressive vocabularies of 970 non-autistic toddlers (Mage = 20.82 months) and 194 autistic children (Mage = 54.58 months) in two studies. The groups were vocabulary-matched (words produced: MAutistic = 213.60, MNon-autistic = 213.72). In study 1, we estimated their trajectories of semantic development using network analyses. Network structure was based on child-oriented adult-generated word associations. We compared child semantic networks according to indegree, average shortest path length, and clustering coefficient (features that holistically contribute to well-connected network structure). Then, in study 2, we attempted to relate vocabulary-level effects to word-level learning biases.
Results: Study 1 revealed that autistic and non-autistic children are sensitive to the structure of their semantic environment. Both groups demonstrated nonlinear vocabulary trajectories that differed from random acquisition networks. Despite similarities, group differences were observed for each network metric. Differences were most pronounced for clustering coefficient (how closely connected groups of words are), with earlier peaks for autistic children. Study 2 demonstrated that many words differ in their expected vocabulary size of acquisition.
Conclusions: Group differences at the vocabulary- and word-levels indicate that, although autistic children are learning from their semantic environment, they may be processing their semantic environment differently. These deviations indicate that autistic children have distinctive learning biases that may align with core autism features. | 1/194 | Secondary Analysis | Shared |